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Abstract

We’ll begin by building upon the previous lecture to prove the equivalence between Spec(n) and
Cont(n). From there, we’ll move on to provide two descriptions of V λ by constructing a basis and
showing how the Coxeter generators act on said basis. Lastly, we’ll prove some miscellaneous results
such as: a bound on the multiplicity of irreducible representations and a description of the centralizer
Z(l, k).

1 Review

Definition. The Coexeter generators of Sn are the elements of the form:

si = (i, i+ 1)

Definition. The Spectrum of n is the set

Spec(n) = {α(v) | v ∈ Yn}

where α(v) denotes the weight of v and Yn is the young basis for Sn. We furthermore define an equivalence
relationship ∼ on Spec(n) such that for α, β ∈ Spec(n) we say α ∼ β if vα, vβ are in the same Gelfand-
Tetslin basis.

In Ryan’s talk, he proved the following important proposition about how the coexeter generators act
on the elements of the Spectrum:

Theorem 1.1. Suppose
α = (a1, . . . , ai, ai+1, . . . , an) ∈ Spec(n)

then if ai+1 6= ai ± 1 we have:

α′ := si · α = (a1, . . . , ai+1, ai, . . . , an)

and over the vector space with basis vα′ , vα for fixed vα and some choice of vα′

si =


1

ai+1−ai
1− 1

(ai+1−ai)2

1 1
ai−ai+1


We will use the above theorem extensively in section 3 to give a basis description of V λ. However,

we will first begin by extending the results from Myeonhu’s talk on content vectors. For a review:

Definition. The n-th Content Vector, denoted Cont(n), is defined to be the set of all tuples (a1, . . . , an)
such that

1. a1 = 0

2. If aq > 0 there exists an i < q such that ai + 1 = aq. If aq < 0 there exists an i < q such that
ai − 1 = aq.

3. If ap = aq = a for some p < q, then there exists p < i, j < q such that ai = a− 1 and aj = a+ 1.

We furthermore define an equivalence relation ≈ on Cont(n) such that if α, β ∈ Cont(n) we say α ≈ β if
α, β are equal as sets (i.e. contain the same elements).
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Lemma 1.2. If α, β ∈ Spec(n) have α ∼ β, then α ≈ β.

Lemma 1.3. For all positive integers n, we have Spec(n) ⊂ Cont(n)

Lemma 1.4. If α ∈ Spec(n) and β ∈ Cont(n) satisfy α ≈ β, then β ∈ Cont(n) and α ∼ β.

In this talk, we will begin by using these result to prove equivalence between Spec(n)/ ∼ and
Cont(n)/ ≈

2 Equivalence between Spec(n) and Cont(n)

Theorem 2.1. For all positive integers n, we have Spec(n) = Cont(n). Furthermore, the two equivalence
relations ∼,≈ are equivalent.

Proof. Consider an equivalence class E in Cont(n)/ ≈. If a single element of this equivalence class lies
in Spec(n), then by lemma 1.4, every element of E must lie in Spec(n) and be equivalent under ∼.
Furthermore, by lemmas 1.2 and 1.3, any equivalence class in Spec(n) must be an equivalence class in
Cont(n) and furthermore, all of the elements must be equivalent under ≈.

In total, the equivalence classes of Spec(n)/ ∼ are a subset of those of Cont(n)/ ≈. Thus if we can
show:

|Spec(n)/ ∼ | = |Cont(n)/ ≈ |
the two sets must contain precisely the same equivalence classes and thus Spec(n) = Cont(n) and ∼=≈.
We will now prove precisely this.

Let p(n) denote the number of partitions of n. Recall that there is a bijection between Cont(n)/ ≈
and the set of young diagrams with n boxes. Note that there is a bijection between the set of young
diagrams and the partitions of n defined by sending a young diagram D to the partition:

D1 +D2 + · · ·+Dr

where r is the number of rows in D and Di is the number of boxes in the n-th row. Thus we have:

|Cont(n)/ ≈ | = p(n)

Now by definition:
|Spec(n)/ ∼ | = #{Ŝn}

where the latter denotes the set of irreducible representations of {Ŝn}. Now, by a well-know result,
#{Ŝn} is simply the number of conjugacy classes of n. As conjugacy preserves cycle type and all cycles
of the same length are conjugate, each conjugacy class of Sn will only depend on the length of cycles it
contains. Thus we can send each conjugacy class C to the partition:

C1 + C2 + · · ·+ Cr

where Ci is the length of the i-th cycle of C when ordered in decreasing order. For example,

(1345)(27)(6)(9) 7→ 4 + 2 + 1 + 1

This map is a bijection, thus
|Spec(n)/ ∼ | = #{Ŝn} = p(n)

Hence we have shown:
|Spec(n)/ ∼ | = |Cont(n)/ ≈ |

as desired.

Remark. As Cont(n) is bijective with the space of path to the n-th row in the Young Graph and
Cont(n)/ ≈ is bijective with n-the row of the Young Graph, it follows from this result that the Young
Graph is the branching graph of the symmetric group. Furthermore, the space of paths is bijective to
the elements of the young basis.
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3 Young Formulas

We’ll begin by defining an important quantity to be used from now on:

Definition. Let s ∈ Sn, the inversion number of s is defined:

l(s) = #{(i, j) | i < j and s(i) > s(j)}

Remark. It is a well-known fact that for s ∈ Sn, l(s) is equivalently the smallest r such that there exists
coxeter generators a1, . . . , ar for which s = a1 · · · ar

We also want to be able to define the inversion number l(T ) for young-tableaux T . Suppose T ∈
Tab(λ) where λ = (λ1, . . . , λr). As in proposition 3.6 of Myeonhu’s talk, we define T0 to be the young
tableaux with diagram λ and monotone numeration (i.e. the tableaux where we sort the boxes first by
row number and then by column number with smaller rows and columns coming first and then label
them increasing order with the positive integers 1, 2, 3, 4, . . .). Let s be the permutation that sends T0 to
T . Then we define:

l(T ) = l(s)

Following Myeonhu’s proof of proposition 3.6, we can see that in the transformation from T → T0 con-
tains precisely l(T ) admissible transpositions were used.

We’ll now give a specific choice of basis for the given representation V λ and prove some properties
that is satisfies. Let vT0 be any nonzero vector corresponding to the tableaux T0 ∈ Tab(λ). For all other
T ∈ Tab(λ) we define:

vT = PT · s · vT0 (1)

We’ll first prove the following lemma:

Lemma 3.1. Let T ∈ Tab(λ) and let s ∈ Sn be such that T = sT0. Then there exists rational numbers
γR such that

s · vT0 = vT +
∑

R∈Tab(λ),l(R)<l(T )

γRvR

Proof. We’ll prove this by induction on l(T ). The base case l(T ) = 0 is clear. Now suppose this holds for
all T with l(T ) ≤ k. Suppose U ∈ Tab(λ) has λ(U) = k + 1. There exists a U ′ ∈ Tab(λ) and a coxeter
generator sj such that λ(U ′) = k and U = sjU

′. Let s be such that sT0 = U ′. We have for some γR:

s · vT0 = vU′ +
∑

R∈Tab(λ),l(R)<l(U′)

γRvR

multiplying both sides by sj :

sjs · vT0 = sj · vU′ +
∑

R∈Tab(λ),l(R)<l(U′)

γRsjvR

Now, by theorem 1.1, for each R there exists γ′ and ai+1, ai such that

sjvR =
vR

ai+1 − ai
+ γ′vsjR

As l(sjR) ≤ l(R) + 1 < l(U ′) + 1 = l(U), there exists γ′R such that

sjs · vT0 = sj · vU′ +
∑

R∈Tab(λ),l(R)<l(U)

γ′RvR

Similarly there exists γ′, a′i+1, a
′
i such that,

sjvU′ =
vU′

a′i+1 − a′i
+ γ′vU

The first term can be absorbed into the summation so that there exists γ̄R such that

sjs · vT0 = γ′ · vU +
∑

R∈Tab(λ),l(R)<l(U)

γ̄RvR

Taking PU of both sides gives:
vU = PUsjs · vT0 = γ′ · vU

Thus γ′ = 1 and our induction is complete.
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Theorem 3.2. The previously described basis {vT } of V λ has the property that the Coxeter generators
si act such that if T ′ = siT , l(T ′) > l(T ) and

α(T ) = (a1, . . . , an) ∈ Cont(n)

then we have:

si · vT = vT ′ +
1

ai+1 − ai
vT

and

si · vT ′ =

(
1− 1

(ai+1 − ai)2

)
vT −

1

ai+1 − ai
vT ′

Proof. We will use the same notation as in the prelude to this theorem. Let vT0 be a nonzero vector
corresponding to the tableaux T0 ∈ Tab(λ). For each tableaux T ∈ Tab(λ), if T = sT0, define vT to be:

Now, by theorem 1.1 implies that for all T and si we have

si · vT = cT,sivT ′ +
1

ai+1 − ai
vT (2)

and

si · cT,sivT ′ =

(
1− 1

(ai+1 − ai)2

)
vT −

cT,si
ai+1 − ai

vT ′

for some constants cT,si . Now suppose s ∈ Sn is such that T = sT0. By lemma 3.1 for some rationals
γR, γ

′
R,

svT0 = vT +
∑

l(R)<l(T )

γRvR

sisvT0 = vT ′ +
∑

l(R)<l(T ′)

γ′RvR

multiplying the former by si and equating the two gives, as l(T ) < l(T ′), that for some rationals γ̄R we
have:

sivT = vT ′ +
∑

l(R)<l(T ′)

γ̄R

applied to equation 2 this implies cT,si = 1, which gives us the desired result.

Remark. We can also scale the vectors differently to get an orthogonal basis. In this case the action of
si becomes: (

r−1
√

1− r−2
√

1− r−2 r−1

)
with r = ai+1 − ai

4 Miscellaneous Result I

For this following theorem we will index irreducible representations by the corresponding young diagram.

Theorem 4.1. Let µ be a young diagram with n boxes and λ be a young diagram with n+ k boxes. The
multiplicity of an irreducible representation πµ of Sn in a representation πλ is equal to the number of
paths between µ and λ. Thus the multiplicity is 0 if there are no paths, and it is fewer than k! in all
cases.

Proof. The multiplicity being the number of paths follows directly from the equivalence between the
branching graph and the young graph. Thus we just need to show the bound of k!. Note that the
diagram λ will be the diagram µ with k additional boxes. Each path from µ to λ will correspond
to a labelling of these boxes with the numbers n + 1, . . . , n + k by our definition of young tableaux.
Furthermore, each path will have a different labelling. As there are k! ways to label the k boxes with
these k numbers, there are at most k! paths. Thus the multiplicity is at most k!.
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5 Miscellaneous Result II

For this section we will use Ik to denote the identity in Sk. We first define the projection p̃n : Sn → Sn−1

as follows: Take σ ∈ Sn and write it as a product of cycles

σ = c1c2 · · · cr

then define p̃n to simply be the element that results from removing n from the cycle that it lies in. For
instance:

p̃3((13)) = I3
p̃5((125)(34)) = (12)(34)

p̃6((124635)) = (12435)

We now have the following lemma on p̃n:

Lemma 5.1. We have:

1. p̃n(In) = In−1

2. p̃n|Sn−1 = idSn−1

3. p̃n(g1hg2) = g1p̃n(h)g2 for g1, g2 ∈ Sn−1, h ∈ Sn

Proof. Properties 1, 2 are clear. Suppose i, j are such that h(i) = n and h(n) = j. Then p̃n(h) is identical
to h except p̃n(h)(i) = j and it is undefined at n. Let r be such that g2(r) = i. Then as g2(n) = n,

p̃n(hg2)(r) = h(g2(n)) = j = p̃n(h)g2(r)

At all other values it is clearly the same, thus p̃n(hg2) = p̃n(h)g2. Applying similar reasoning to g1 gives
the desired result.

By linearity, we can extend the map p̃n to a map of the group algebras:

pn : C[Sn]→ C[Sn−1]

Recall that Z(n − 1, 1) is the centralizer of C[Sn−1] in C[Sn]. Using the above notation, we have the
following theorem.

Theorem 5.2.
p−1
n ({cI}) ∩ Z(n− 1, 1) = {aXn + bI}

where {cI} denotes the vector space spanned by the identity, Z(n − 1, 1) denotes the centralizer of Sn−1

in C[Sn], Xn denoted the n-th Young-Jucys-Murphy element, and {aXn + bI} denotes the set spanned by
Xn and I.

Proof. Recall that
Z(n− 1, 1) = 〈Zn−1, Xn〉

Thus suppose g ∈ Z(n− 1, 1). Then we can write: g = z + bXn for some z ∈ Zn−1. If

g ∈ p−1
n ({cI}) ∩ Z(n− 1, 1)

then we must further have for some k:

kI = pn(g) = pn(z) + pn(bXn)

As pn fixes elements in Sn−1 we have pn(z) = z. Furthermore, by its definition, pn(Xn) = b(n − 1)I.
Thus we have

kI = z + b(n− 1)I
which is satisfied if and only if z = (k − b(n − 1))I. Thus the elements of p−1

n ({cI}) ∩ Z(n − 1, 1) are
precisely those of the form:

aXn + bI
for constants a, b as desired.

Remark. This allows us to define a fancy group:

S = lim
←

(Sn, p̃n)
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In the same vein as the other theorems, we have:

Theorem 5.3. The centralizer:
Z(n, k) := C[Sn+k]C[Sn]

is generated by the center Z(n) of C[Sn], the group Sn permuting the elements n+ 1, . . . , n+ k, and the
YJM-elements Xn+1, . . . , Xn+k.

Proof. The proof follows the same structure as the proof of theorem 4.8 in Micah’s talk.
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